
Defining and Using Context Menus
As from Natural v4.1.1, it is possible to create context menus for use within Natural applications. The context menus
can be completely static (i.e., the menu contents are known in advance and can be built via the Dialog Editor) or
wholly or partially dynamic (i.e., the menu contents and/or state depend on the runtime context and are not
completely known at design time).

Construction

A context menu is very similar in concept to a submenu. Therefore, the same menu editor is used for editing a
context menu as is used for editing a dialog’s menu bar. Menu items can be added to context menus, and events
associated with them, in exactly the same way as for menu-bar submenus. There are no functional differences to the
menu bar editor, except that the ’OLE’ combo box (which is applicable only to top-level menu-bar submenus) will
always be disabled. It should be noted, however, that any accelerators defined for context menu items will be
globally available as long as that menu item exists. Furthermore, the accelerator will trigger the menu item for which
it is defined even if the context menu is not being displayed or if the focus is on a control using a different context
menu or no context menu at all.

The context menu editor may be invoked via either a new menu item, ’Context menus...’ on the ’Dialog’ menu, or
via its associated accelerator (CTRL+ALT+X by default), or toolbar icon. However, because the context menu editor
can only edit one context menu editor at a time, the context-menu editor is not invoked directly. Instead, the Dialog
Context Menus window is shown, where operations on the context menu as a whole are made, and from which the
menu editor for a given (selected) context menu can be invoked.

Internally, in order to distinguish between submenus and context menus, context menus have a new type, CONTEXT
MENU. Otherwise, the generated code in both cases is identical. Here is some sample code illustrating the
statements used to build up a simple context menu containing two menu items:

/* CREATE CONTEXT MENU ITSELF:
PROCESS GUI ACTION ADD WITH PARAMETERS
 HANDLE-VARIABLE = #CONTEXT-MENU-1
 TYPE = CONTEXTMENU
 PARENT = #DLG$WINDOW
END-PARAMETERS GIVING *ERROR
/* ADD FIRST MENU ITEM:
PROCESS GUI ACTION ADD WITH PARAMETERS
 HANDLE-VARIABLE = #MITEM-1
 TYPE = MENUITEM
 DIL-TEXT = ’Invokes the first item’
 PARENT = #CONTEXT-MENU-1
 STRING = ’Item 1’
END-PARAMETERS GIVING *ERROR
/* ADD SECOND MENU ITEM:
PROCESS GUI ACTION ADD WITH PARAMETERS
 HANDLE-VARIABLE = #MITEM-2
 TYPE = MENUITEM
 DIL-TEXT = ’Invokes the second item’
 PARENT = #CONTEXT-MENU-1
 STRING = ’Item 2’
END-PARAMETERS GIVING *ERROR

Note that if context menus or context-menu items are created dynamically in user-written code, the context menu or
menu items will not be visible to the Dialog Editor. For example, the dynamically created menu item will not be
visible in the context menu list box, and the dynamically created menu items will not be visible in the context menu
editor.

1Copyright Software AG 2003

Defining and Using Context Menus<Untitled>

Association

After creating a context menu, the context menu needs to be associated with a Natural object. Context menus are
supported for almost all controls types capable of receiving the keyboard focus and for the dialog window itself. The
full list includes ActiveX controls, bitmaps, canvasses, edit areas and input fields, list boxes, push buttons, radio
buttons, scroll bars, selection boxes, table controls, toggle buttons, standard and MDI child windows, and MDI frame
windows.

For all object types supporting context menus, the corresponding attribute dialogs in the Dialog Editor include a
read-only combo box listing all context menus created by the Dialog Editor, together with an empty entry. The
selection of the empty entry implies that no context menu is to be used for this object, and is the default.

Internally, the association is achieved by a new attribute, CONTEXT MENU , which should be set to the handle of a
context menu. This attribute can be assigned at or after object creation time, and defaults to NULL-HANDLE if not
specified, indicating the absence of a context menu. For context menus created by the Dialog Editor, the context
menu is specified at control creation time as illustrated below:

PROCESS GUI ACTION ADD WITH
PARAMETERS
 HANDLE-VARIABLE = #LB-1
 TYPE = LISTBOX
 RECTANGLE-X = 585
 RECTANGLE-Y = 293
 RECTANGLE-W = 142
 RECTANGLE-H = 209
 MULTI-SELECTION = TRUE
 SORTED = FALSE
 PARENT = #DLG$WINDOW
 CONTEXT-MENU = #CONTEXT-MENU-1
 SUPPRESS-FILL-EVENT = SUPPRESSED
END-PARAMETERS GIVING *ERROR

The same syntax can also be used for controls created in user-written event code. In other cases, where the control
was created by the Dialog Editor but the context menu was not, the context menu attribute must be assigned to the
control after its creation, e.g., in the dialog’s AFTER-OPEN Event:

/* CONTEXT MENU SPECIFIED AFTER CREATION:

#LB-2.CONTEXT-MENU := #CONTEXT-MENU-2

Note that a context menu is not destroyed when an object using it is destroyed. Instead, it is destroyed when its
parent object (typically, the dialog for which the context menu was defined) is destroyed. Similarly, the assignment
of a new menu handle to the CONTEXT MENU Attribute where one is already assigned does not result in the
previous context menu being destroyed. Thus, using the above examples, neither of the following statements results
in CONTEXT-MENU-1 being destroyed:

PROCESS GUI ACTION DELETE WITH #LB-1 /* #CONTEXT-MENU-1 LIVES ON

#LB-1.CONTEXT-MENU := #CONTEXT-MENU-2 /* SAME HERE

Copyright Software AG 20032

<Untitled>Association

Invocation

The invocation of static context menus is transparent to the application. The tracking of the context menu and the
triggering of the events associated with the menu items is done by Windows and Natural. The context menu is
always displayed at the current mouse cursor position. Therefore, there are no new PROCESS GUI statements for
displaying context menus.

However, in order to support dynamic context menus or static context menus that need to be modified at runtime
(e.g. to disable or check particular menu items before the context menu is displayed), context menus and submenus
receive a BEFORE-OPEN Event. This applies to submenus belonging to a menu bar as well as to submenus
belonging to a context menu. In addition, it is possible to suppress this event via the use of a new attribute,
SUPPRESS-BEFORE-OPEN-EVENT, which defaults to SUPPRESSED. Assuming the event is not suppressed, the
BEFORE-OPEN Event will be triggered immediately before a context menu is displayed. This gives the application
the chance to modify the context menu according to the current program state. For example, menu items could be
added or deleted, or particular menu items grayed or checked. Here is some sample code for the BEFORE-OPEN
Event:

/* DELETE FIRST MENU ITEM:
PROCESS GUI ACTION DELETE WITH #MITEM-1
/* CHECK SECOND MENU ITEM:
#MITEM-2.CHECKED := CHECKED
/* DISABLE THIRD MENU ITEM:
#MITEM-3.ENABLED := FALSE
/* INSERT NEW MENU ITEM BEFORE #MITEM-3:
PROCESS GUI ACTION ADD WITH PARAMETERS
 HANDLE-VARIABLE = #MITEM-4
 TYPE = MENUITEM
 DIL-TEXT = ’Invokes the first item’
 PARENT = #CONTEXT-MENU-1
 STRING = ’Item 3’
 SUCCESSOR = #MITEM-3
END-PARAMETERS GIVING *ERROR

For context menus not created by the Dialog Editor, the handling of the BEFORE-OPEN Event must be done in the
DEFAULT event for the dialog. Note also that if a control or dialog is disabled, no context menu is displayed, and
the BEFORE-OPEN Event is also not triggered. The same applies if the context menu itself is disabled. For example:

#CONTEXT-MENU-1.ENABLED := FALSE /* DISABLE CONTEXT MENU DISPLAY

Note that it is possible to disable the context menu in this way during the BEFORE-OPEN Event, allowing selective
disabling of the context menu depending on the mouse cursor position within the control. For example, it might be
desired to only display a context menu if the mouse cursor is over a selected list-box item. Determining whether this
is the case is possible via the use of two PROCESS GUI ACTION calls:

INQ-CLICKPOSITION has been extended to controls other than bitmaps and canvasses to return the (X, Y)
position of the right mouse button click within the control. This is updated immediately prior to the sending of
the BEFORE-OPEN Event.
INQ-ITEM-BY-POSITION. This allows translation of the relative co-ordinate returned by
INQ-CLICKPOSITION applied to a list box to the corresponding item.

As an example of the use of these two new actions, consider the situation where we want to detect whether the cursor
was over a selected list-box item when the right mouse button was pressed in order to determine whether to display a
context menu or not. This can be achieved by the following code in the BEFORE-OPEN Event of the associated
context menu:

3Copyright Software AG 2003

Invocation<Untitled>

PROCESS GUI ACTION INQ-CLICKPOSITION WITH
 #LB-1 #X-OFFSET #Y-OFFSET
PROCESS GUI ACTION INQ-ITEM-BY-POSITION WITH
 #LB-1 #X-OFFSET #Y-OFFSET #LBITEM
#MENU = *CONTROL
IF #LBITEM = NULL-HANDLE /* NO ITEM UNDER (MOUSE) CURSOR */
 #MENU.ENABLED := FALSE
ELSE
 IF #LBITEM.SELECTED = FALSE /* ITEM UNDER CURSOR DESELECTED */
 #MENU.ENABLED := FALSE
 ELSE /* ITEM UNDER CURSOR IS SELECTED */
 #MENU.ENABLED := TRUE
 END-IF
END-IF

In some cases, it may be desired to automatically select the item under the mouse cursor if it is not already selected,
clearing any existing selection. For list boxes, it is possible to achieve this by using the new AUTOSELECT
attribute, either directly or via the new ’Autoselect’ check box (see previous bitmap) in the List Box Attributes
window in the Dialog Editor. If this attribute is set to TRUE, Natural will automatically update the selection before
sending the BEFORE-OPEN Event, if the context menu was invoked over an unselected list-box item.

For table controls, any change in the selection must be done via the application itself in the BEFORE-OPEN Event.
To make this possible, another new PROCESS GUI ACTION has been introduced for table controls:

TABLE-INQUIRE-CELL. This returns the cell’s row and column number (starting from 1) for a relative (X, Y)
position within the table. This position can (and would typically be) the position returned by a previous call to
PROCESS GUI ACTION INQ-CLICKPOSITION.

Sharing of Context Menus

It is of course possible to associate the same context menu with more than one object (i.e., control or dialog). For
example:

#LB-1.CONTEXT-MENU := #CTXMENU-1
#LB-2.CONTEXT-MENU := #CTXMENU-1

In such a scenario, we need to be able to determine for which control the context menu was invoked. We cannot use
*CONTROL in the BEFORE-OPEN Event, because this will contain the handle of the context menu itself. Instead, it
is necessary to inquire which control has the focus, since Natural automatically places the focus on the control for
which the context menu is being invoked. Here is some sample BEFORE-OPEN Event code illustrating the use of
this technique:

PROCESS GUI ACTION GET-FOCUS WITH #CONTROL
DECIDE ON FIRST VALUE OF #CONTROL
 VALUE #LB-1
 #MITEM-17.ENABLED := FALSE
 VALUE #LB-2
 #MITEM-17.CHECKED := CHECKED
 NONE
 IGNORE
END-DECIDE

Back to Event-Driven Programming Techniques.

Copyright Software AG 20034

<Untitled>Sharing of Context Menus

	Defining and Using Context Menus
	
	Construction
	Association
	Invocation
	Sharing of Context Menus

